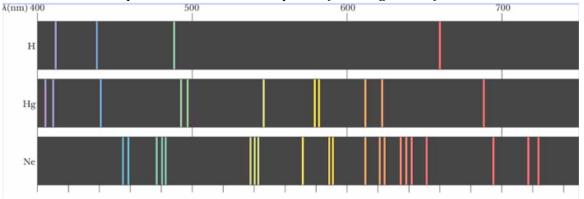
Name_____

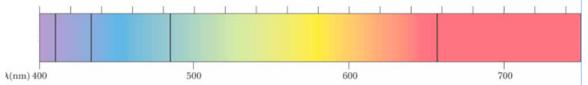
1. a. The electron was the first sub-atomic particle that was discovered (by Thompson.) Why do you think it was the first?

b. Describe the evidence that was used to support the discovery of the electron. Why was it assumed that electrons exist within atoms, rather than are created in the course of the experiment?


c. Draw a picture of Thompson's proposed atomic structure and indicate how it differs from Dalton's.

- d. Rutherford discovered the existence of a small positively charged nucleus within each atom. What observation was this conclusion based on? How did this change Thompson's atomic theory ?
- e. Draw a picture of Rutherford's model of the atom; what is wrong with it?

- 2. Fluorine (F₂) and Chlorine (Cl₂) both exist as diatomic molecules. Fluorine has a boiling point of -85.03 K, and chlorine has a boiling point of 239 K.
- a. Draw a graph showing the change in potential energy as two molecules of fluorine get closer to each other. Label the position where the molecules are **most stable**. Explain why the potential energy changes (either increases or decreases) as the two molecules approach.


b. Now using a dotted line draw a similar curve – **on the same set of axes**. Show the change in potential energy when two chlorine molecules approach each other. Compare the energy changes and position of greatest stability for chlorine to the curve you drew for fluorine. Explain why they are different.

- c. Why do molecules of fluorine attract each other? (That is, why can fluorine exist as a liquid or solid?)
- d. Why does adding thermal energy make fluorine change from a liquid to a gas?

3. Below are examples of atomic emission spectra (for H, Hg and Ne).

- a. Explain what process is responsible for the lines of e/m radiation on an emission spectrum.
- b. Explain why the lines are different for each element.
- c. If a spectrum was taken on the emissions from a star 300 light years away that contained Hg, would it look the same or different? Explain?
- e. Below is an example of an absorption spectrum. Why does it look different to the emission spectra? What process is responsible for the

f. What element is most likely giving rise to this absorption spectrum? On what basis did you make this decision?

h= 6.626 x 10⁻³⁴ J·s (1 J = 1kg.m²/s²) Mass of an electron is 9.1×10⁻³¹ kg speed of light = 3.0 x 10⁸ m/s Avogadros Number = 6.022 x 10²³ $\frac{\mu}{4}$ $c = \lambda v$ $\lambda = h/mv$ E=h v

1	1																VIIIA 18
Н 1.008	<u>IIA</u> 2	PERIODIC TABLE OF THE ELEMENTS										<u>ША</u> 13	1 <u>VA</u>	<u>va</u> 15	V <u>IA</u> 16	<u>viia</u> 17	4.003
Li 6.941	Be 9.012											₿ 10.811	12.011	N 14.007	ů 15.999	Р 18.998	10 Ne 20.1 80
Na 22.990	Mg 24.305	<u>ШВ</u> З	<u>і∨в</u> 4	<u>vв</u> 5	<u>VIВ</u> 6	VIIB 7	8	— <u>vіів</u> —	10	<u>ів</u> 11	<u>‼В</u> 12	Å 26.982	¹⁴ 28.086	P 30.974	16 S 32.066	CI 35.453	År 39.948
К К 39.098	20 Ca 40.078	SC 44.956	22 Ti 47.88	V 50.942	Čr 51.996	²⁵ Mn 54.938	Fe 55.847	CO 58.933	²⁸ Ni 58.69	Cu 63.546	Zn 65.39	Ga 69.723	Ge 72.61	As 74.922	³⁴ Se 78.96	³⁵ Br 79.904	Kr 83.80
85.468	³⁸ Sr 87.62	¥ 88.906	Zr 91.224	Nb 92.906	Mo 95.94	Tc (98)	Ru 101.07	Rh 102.91	Pd 106.42	Åg 107.87	Cd 112.41	49 In 114.82	50 Sn 118.71	Sb 121.75	Te 127.60	53 126.90	Xe 131.29
Cs 1 32.905	Ba 137.327	La 1 38.906	Hf 1 78.49	Ta 180.95	W 183.85	Re 186.21	0s 190.2	⁷⁷ İr 192.22	Pt 195.08	Au 196.97	Hg 200.59	204.38	Pb 207.2	Bi 208.98	Po (210)	Åt (210)	Řn (220)
⁸⁷ Fr (223)	88 Ra (226)	⁸⁹ Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	Bh (262)	108 HS (265)	109 Mt (266)	110	111	112						
	Lanthanides			Ce 140.12	Pr 140.91	Nd 1 44.24	Pm (145)	52 Sm 150.36	⁶³ Ец 151.97	64 Gd 157.25	Tb 158.93	Ďy 162.50	H0 164.93	Er 167.26	Tm 168.93	Yb 173.04	⁷¹ Lu 174.97
	Actinides			⁹⁰ Th 232.04	91 Pa (231)	U 238.03	⁹³ Np (237)	94 Pu (244)	A m (243)	°6 Cm (247)	⁹⁷ Bk (247)	°8 Cf (251)	99 Es (252)	Fm (257)	101 Md (258)	102 No (259)	Lr (262)